6x^2-6x+1-5(4x^2+4x+1)+(6x-3)(2x+1)=x^2-2x+1

Simple and best practice solution for 6x^2-6x+1-5(4x^2+4x+1)+(6x-3)(2x+1)=x^2-2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2-6x+1-5(4x^2+4x+1)+(6x-3)(2x+1)=x^2-2x+1 equation:


Simplifying
6x2 + -6x + 1 + -5(4x2 + 4x + 1) + (6x + -3)(2x + 1) = x2 + -2x + 1

Reorder the terms:
6x2 + -6x + 1 + -5(1 + 4x + 4x2) + (6x + -3)(2x + 1) = x2 + -2x + 1
6x2 + -6x + 1 + (1 * -5 + 4x * -5 + 4x2 * -5) + (6x + -3)(2x + 1) = x2 + -2x + 1
6x2 + -6x + 1 + (-5 + -20x + -20x2) + (6x + -3)(2x + 1) = x2 + -2x + 1

Reorder the terms:
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3 + 6x)(2x + 1) = x2 + -2x + 1

Reorder the terms:
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3 + 6x)(1 + 2x) = x2 + -2x + 1

Multiply (-3 + 6x) * (1 + 2x)
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3(1 + 2x) + 6x * (1 + 2x)) = x2 + -2x + 1
6x2 + -6x + 1 + -5 + -20x + -20x2 + ((1 * -3 + 2x * -3) + 6x * (1 + 2x)) = x2 + -2x + 1
6x2 + -6x + 1 + -5 + -20x + -20x2 + ((-3 + -6x) + 6x * (1 + 2x)) = x2 + -2x + 1
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3 + -6x + (1 * 6x + 2x * 6x)) = x2 + -2x + 1
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3 + -6x + (6x + 12x2)) = x2 + -2x + 1

Combine like terms: -6x + 6x = 0
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3 + 0 + 12x2) = x2 + -2x + 1
6x2 + -6x + 1 + -5 + -20x + -20x2 + (-3 + 12x2) = x2 + -2x + 1

Reorder the terms:
1 + -5 + -3 + -6x + -20x + 6x2 + -20x2 + 12x2 = x2 + -2x + 1

Combine like terms: 1 + -5 = -4
-4 + -3 + -6x + -20x + 6x2 + -20x2 + 12x2 = x2 + -2x + 1

Combine like terms: -4 + -3 = -7
-7 + -6x + -20x + 6x2 + -20x2 + 12x2 = x2 + -2x + 1

Combine like terms: -6x + -20x = -26x
-7 + -26x + 6x2 + -20x2 + 12x2 = x2 + -2x + 1

Combine like terms: 6x2 + -20x2 = -14x2
-7 + -26x + -14x2 + 12x2 = x2 + -2x + 1

Combine like terms: -14x2 + 12x2 = -2x2
-7 + -26x + -2x2 = x2 + -2x + 1

Reorder the terms:
-7 + -26x + -2x2 = 1 + -2x + x2

Solving
-7 + -26x + -2x2 = 1 + -2x + x2

Solving for variable 'x'.

Reorder the terms:
-7 + -1 + -26x + 2x + -2x2 + -1x2 = 1 + -2x + x2 + -1 + 2x + -1x2

Combine like terms: -7 + -1 = -8
-8 + -26x + 2x + -2x2 + -1x2 = 1 + -2x + x2 + -1 + 2x + -1x2

Combine like terms: -26x + 2x = -24x
-8 + -24x + -2x2 + -1x2 = 1 + -2x + x2 + -1 + 2x + -1x2

Combine like terms: -2x2 + -1x2 = -3x2
-8 + -24x + -3x2 = 1 + -2x + x2 + -1 + 2x + -1x2

Reorder the terms:
-8 + -24x + -3x2 = 1 + -1 + -2x + 2x + x2 + -1x2

Combine like terms: 1 + -1 = 0
-8 + -24x + -3x2 = 0 + -2x + 2x + x2 + -1x2
-8 + -24x + -3x2 = -2x + 2x + x2 + -1x2

Combine like terms: -2x + 2x = 0
-8 + -24x + -3x2 = 0 + x2 + -1x2
-8 + -24x + -3x2 = x2 + -1x2

Combine like terms: x2 + -1x2 = 0
-8 + -24x + -3x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(8 + 24x + 3x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(8 + 24x + 3x2)' equal to zero and attempt to solve: Simplifying 8 + 24x + 3x2 = 0 Solving 8 + 24x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 2.666666667 + 8x + x2 = 0 Move the constant term to the right: Add '-2.666666667' to each side of the equation. 2.666666667 + 8x + -2.666666667 + x2 = 0 + -2.666666667 Reorder the terms: 2.666666667 + -2.666666667 + 8x + x2 = 0 + -2.666666667 Combine like terms: 2.666666667 + -2.666666667 = 0.000000000 0.000000000 + 8x + x2 = 0 + -2.666666667 8x + x2 = 0 + -2.666666667 Combine like terms: 0 + -2.666666667 = -2.666666667 8x + x2 = -2.666666667 The x term is 8x. Take half its coefficient (4). Square it (16) and add it to both sides. Add '16' to each side of the equation. 8x + 16 + x2 = -2.666666667 + 16 Reorder the terms: 16 + 8x + x2 = -2.666666667 + 16 Combine like terms: -2.666666667 + 16 = 13.333333333 16 + 8x + x2 = 13.333333333 Factor a perfect square on the left side: (x + 4)(x + 4) = 13.333333333 Calculate the square root of the right side: 3.651483717 Break this problem into two subproblems by setting (x + 4) equal to 3.651483717 and -3.651483717.

Subproblem 1

x + 4 = 3.651483717 Simplifying x + 4 = 3.651483717 Reorder the terms: 4 + x = 3.651483717 Solving 4 + x = 3.651483717 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = 3.651483717 + -4 Combine like terms: 4 + -4 = 0 0 + x = 3.651483717 + -4 x = 3.651483717 + -4 Combine like terms: 3.651483717 + -4 = -0.348516283 x = -0.348516283 Simplifying x = -0.348516283

Subproblem 2

x + 4 = -3.651483717 Simplifying x + 4 = -3.651483717 Reorder the terms: 4 + x = -3.651483717 Solving 4 + x = -3.651483717 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = -3.651483717 + -4 Combine like terms: 4 + -4 = 0 0 + x = -3.651483717 + -4 x = -3.651483717 + -4 Combine like terms: -3.651483717 + -4 = -7.651483717 x = -7.651483717 Simplifying x = -7.651483717

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.348516283, -7.651483717}

Solution

x = {-0.348516283, -7.651483717}

See similar equations:

| 4s+1/6s+23/6s | | 3x+32=12x-40 | | 56-2x=7x+19 | | 4x(x+16)= | | 3(7+2x)=15 | | x^3+9x^2+16x-6=0 | | 8(3x-5)+14-3(3+9x)x=13 | | -45+x/7=-5 | | f/4=9 | | 2/3x=5 | | y/2=4.3 | | 2(g+3)=8+6 | | 2(6x-4)=-44 | | 5(3+h)=4(h-2) | | -10x+240=0 | | 7x1/3 | | 10+4=94 | | (6x-3)(2x+1)=12 | | 3(2x-1)(1x+1)=12 | | z^2+2z=3 | | 4/9=y-2/5 | | (n-7)*9=18 | | 2.1/b=-0.7 | | -(9x-6y-8z)= | | 9x-11=-2 | | 3r+5-2=13 | | 1.2z+3.6=-0.8+4.4 | | 5(3x+4)=5 | | X/2/9=6 | | (X+7)5= | | 8/7-6/p=3p-2/7p | | 1/4y+1/2=-3/4 |

Equations solver categories